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Abstract. In wireless communication networks, optimal use of the di-
rectional antenna is very important. The directional antenna coverage
(DAC) problem is to cover all clients with the smallest number of di-
rectional antennas. In this paper, we consider the variable-size rectangle
covering (VSRC) problem, which is a transformation of the DAC prob-
lem. There are n points above the base line y = 0 of the two-dimensional
plane. The target is to cover all these points by minimum number of
rectangles, such that the dimension of each rectangle is not fixed but the
area is at most 1, and the bottom edge of each rectangle is on the base
line y = 0. In some applications, the number of rectangles covering any
position in the two-dimensional plane is bounded, so we also consider
the variation when each position in the plane is covered by no more than
two rectangles. We give two polynomial time algorithms for finding the
optimal covering. Further, we propose two 2-approximation algorithms
that use less running time (O(nlogn) and O(n)).

1 Introduction

Let R be a region above the base, i.e., y = 0, of a two-dimensional plane. An
h-rectangle is a rectangle with its lower edge touching the base, and with its
height A > 0 and width w, such that w-h < 1, i.e., the area of an h-rectangle
is bounded by 1. An h-rectangle (h,z¢, z") is defined by its height, the position
of its left edge and right edge. We say an h-rectangle is at q if its left edge is at
zt=q.

The Variable-Size Rectangle Covering (VSRC) problem is to cover a given set
of points with the minimum number of h-rectangles. Note that this VSRC prob-
lem differs from the traditional set covering problem in several ways. Besides the
points in a two-dimensional region to be covered by h-rectangles, the dimensions
of the h-rectangles can vary and the lower sides of the h-rectangles have to be
grounded (i.e., touching the base y = 0). For example, consider the set of points
P = {(0,0.05),(3,0.3), (4,0.35), (5,0.45), (6,0.1), (7,0.12), (8,0.09)}. P can be
covered by the following three h-rectangles (as shown in Figure 1(a)): (0.3,0, 3),
(0.45,4,6) and (0.12,7,8), or alternatively, by two h-rectangles (as shown in
Figure 1(b)): (0.12,0,8) and (0.45,3,5). The formulation of the problem has
some immediate applications; e.g., points can be assumed as dirty stains on a
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Fig.1. Two coverings for P = {(0,0.05),(3,0.3), (4,0.35), (5,0.45), (6,0.1), (7,0.12),
(8,0.09)}

wall, the VSRC problem is equivalent to covering these dirty stains with the
minimum number of rectangular cardboards standing on the floor and leaning
against the wall, and whose dimensions are not fixed but the area of each card-
board is bounded.

An important application of the VSRC problem is to optimize the use of a di-
rectional antenna in a wireless network [11-13]. Traditionally, a wireless network
uses an antenna that is omnidirectional, i.e., the signals are sent and received in
all directions. In recent years, the use of directional antennas has become more
common. A directional antenna is one whose signal is concentrated in a certain
direction. Comparing with omnidirectional ones, it is far more efficient in terms
of the frequency bandwidth and energy. In some antenna designs, multiple beams
pointing at different directions can be used simultaneously, e.g., the multi-beam
adaptive array (MBAA) [1]. For example, consider a set of clients on a two-
dimensional plane. There is a base station which provides wireless coverage to
these clients. The base station uses a directional antenna to send “beams” to
cover the clients so as to provide wireless coverage (as shown in Figure 2).

Fig. 2. Clients covered by beams from directional antennas

In an abstract model, the coverage area of a beam can be represented by a
circular sector with angle # and radius r. Typically the covered area of a beam



is bounded since the transmission energy of each base station is bounded, which
means the wider the beam angle, the shorter the range [2]. For efficiency, an-
tennas may dynamically adjust their orientation, and/or beam angle (and hence
the range) [9]. The directional antennas coverage (DAC) problem is to cover all
clients with the smallest number of beams.

The DAC problem can be transformed to the VSRC problem as follows.
Each client at position (r;,6;) can be converted to point p; = (z;,y;), where
x; = kO; and y; = r;. Similarly each beam with radius r and angle 6(r) at a
direction 6y is equivalent to an h-rectangle (h,z% z"), where h = r, 2t = kb,
and " = k(0g + 6(r)). The bounded area of each beam can be converted to the
bounded area of each h-rectangle. Furthermore, since the beam is sent by an
antenna at the origin which corresponds to r = 0, this would imply that each h-
rectangle would have to touch the base y = 0 when capturing the points (clients).
Let the wrapped around line for the VSRC problem be the line x = 2kx. In this
way, the DAC problem can be reduced to the VSRC problem with the points
in the region being wrapped around and minimizing the number of beams used
would be equivalent to minimizing the number of h-rectangles. From Lemma
1 in Section 2.1, we have the good property of optimal covering, i.e., any two
h-rectangles are either disjoint or nested. If we have an algorithm for the VSRC
problem without wrapped around point, we can modify the algorithm to deal
with wrapped around case (DAC) as follows:

— For each point, cut the region at its z-coordinate then attach the right part
to the left of the left part (as shown in Figure 3) and apply the algorithm
for finding the optimal covering;
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Fig. 3. Cut at the 4th point then attach the right part to the left of the left part

— Return the one with minimal number of h-rectangles.

Thus, we can reduce the algorithm for the VSRC problem without wrapped
around point for the DAC problem. On the other hand, given the algorithm
for the DAC problem, we can apply it for the VSRC problem without wrapped
around point as follows:

— Find the point of the lowest height h;



— Apply the algorithm for VSRC with wrapped around points (DAC) and the
wrapped around line is at = x,. + 1/h + 1, where z, is the z-coordinate of
the rightmost point.

In this way, any two points cannot be covered by an h-rectangle crossing the
wrapped around line. Thus, the algorithm for the DAC problem can be reduced
to the algorithm for the VSRC problem without wrapped around point.

In most applications on wireless communications, to avoid interference, each
position in the plane can be covered by a bounded number of antennas. In other
applications, this constraint is still reasonable, e.g., in the above example of
covering dirty stains on the wall, the number of cardboards covering each po-
sition on the wall cannot be too many, that is because the total thickness of
cardboards on each point cannot be too thick. In this paper, we consider the
variation that any position in two-dimensional plane can be covered by at most
two h-rectangles.

The problem of covering a set of points in a two-dimensional plane with
the minimum number of unit disks or squares is well studied. It is NP-hard [5]
to find the optimal solution, and polynomial time approximation schemes are
known [7] (even for any higher but fixed dimensions). Berman et al. [2] used
bin packing [8,10] and other techniques to give a 3-approximation algorithm for
the capacitated version of DAC problem, i.e., the number of clients covered by
a beam is bounded. They also considered the case where the radii of all anten-
nas are fixed and equal. This essentially reduces the problem to one dimension.
They [2] gave a tight 1.5-approximation algorithm for this case.

To find the optimal covering for the VSRC problem, we give two polynomial
time algorithms: an O(n?) time algorithm and an O(n?) time algorithm for the
variations without and with the constraint that each position in the plane is
covered by no more than two h-rectangles. With less running time (O(nlogn)
and O(n)), we propose two 2-approximation algorithms.

In Section 2, we give two optimal algorithms for two variations of the VSRC
problem, we also propose two 2-approximation algorithms for this problem by
using less running time. The conclusion and future research are discussed in
Section 3.

2 Algorithms for the VSRC Problem

In this section, we show that because all h-rectangles have to be grounded, the
VSRC problem can be solved in polynomial time by dynamic programming,



2.1 An O(n*) Algorithm

Firstly, we give a polynomial time algorithm for solving the VSRC problem
without the constraint that each position in two-dimensional plane is covered by
at most a bounded number of h-rectangles.

Consider any two h-rectangles 71 = (hy, x4, 27) and ro = (hg, 25, 2%) in the
optimal covering. Assuming z} < z}, there are at most three cases of the rela-
tionship between r; and 5.

— ot <2} <zl < ab, ie., these two h-rectangles are disjoint, which is shown
in Figure 4(a)

— 2} < ab < 27 < 2, ie., these two h-rectangles are overlapped, as shown
in the left part of Figure 4(b). In this case, we may transform these two
overlapped h-rectangles to two disjoint h-rectangles, as shown in the right
part of Figure 4(b), which still cover the same area.

— ot <2l < 2 < 2, ie., these two h-rectangles are nested, as shown in

Figure 4(c)
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Fig. 4. The relationship between two h-rectangles in the optimal covering.

Thus, we have the following lemma for the optimal covering;:

Lemma 1. In the optimal covering, any two h-rectangles are either disjoint or
nested.

Consider the set of points P = {p1,p2, ..., pn}, where p; = (x;,y;), and z1 <
x9 < ... < x,. Define N (i, j, h) be the minimum number of h-rectangles needed
to cover the points Q = {py € Pli <k < j and yx > h}.

According to Lemma 1, the optimal covering for @@ must be in one of these
forms (i) disjoint optimal covering for {p;...px} N @ and {pxy1...p;} N Q for
some ¢ < k < j; or (ii) nested covering with an h-rectangle R;; with height
h' =1/(z; — ;) covering p; and p; and some other points in P and with height
no more than h’, and another optimal covering for Q' = {pr € Qi < k <
Jjand yi > h'}.

From the above analysis, we have the recursive formula for the minimum
number of h-rectangles covering all the points.



1 if all points can be covered by one h-rectangle

N(i, j, h)=
min{ min {N(i,k, AN (1, 3, h)}, NG, 5, W)+ otherwise
ISR

(1)

As there are O(n?) terms of N (i, j, h) and from the above formula, it is easy

to see that each term takes O(n) time to compute. Thus, we have the following
result.

Theorem 1 The VSRC problem can be solved in O(n*) time, if each posi-
tion of the two-dimensional plane can be covered by an unbounded number of
h-rectangles.

This preliminary result shows that the VSRC problem is not NP-hard.

2.2 2-Approximation Algorithms with Less Running Time

In this section, we give two simple algorithms, whose solutions is at most twice
of the optimal solution, i.e., 2-approximation. The idea of the first algorithm is
from [2].

In any covering strategy, the highest point p = (z,y) must be covered by an
h-rectangle with h > y, and the width of this h-rectangle is at most 1/h. Note
that if h > y, the coverage by the h-rectangle higher than y is wasted. Thus, we
can assume that h = y and use two disjoint h-rectangles to cover p, on the left
and right side of p. After all the covered points are removed, the next highest
point will then be selected and processed in the same way until all points are
covered. Formally, the algorithm can be described as follows.

Input: P = {(z;,y;)|1 <i<n}
Algorithm VSRC1

1: while P # ¢ do

2 Find the point (z,y) with the highest height y in P.

3 Create two h-rectangles (y, (x — 1/y), ) and (y,z, (z + 1/y))

4 if these two h-rectangles overlap with previous h-rectangles then

5: Trim the width of these two h-rectangles until there is no overlap.
6 end if

7 Remove from P those points covered by these two h-rectangles.

8: end while

Theorem 2 Algorithm VSRC1 is 2-approximation with running time O(nlogn).

Proof. Let ¢; be the highest point selected in round i. We claim that in any
covering strategy, any two points g; and g;, with ¢ < j, must be covered by two
disjoint h-rectangles. Otherwise, |z; — x;| - y; < 1, that means point ¢; should
be covered and removed in round i, this leads to contradiction.



As the minimum number of h-rectangles needed to cover all the points is
no less than the number of highest points selected from each round. Thus, the
number of rounds is the lower bound for the optimal covering. Since we create
two h-rectangles at each round, VSRC1 is a 2-approximation algorithm.

As updating the set of uncovered points and finding the highest point take
O(logn) time and the number of rounds is at most n, the running time of
algorithm VSRCI is O(nlogn). O

Consider an example with points p; = (h,i) for 1 <i <n and h > 1. It can
be shown easily that VSRC1 outputs 2n h-rectangles while the optimal covering
needs n h-rectangles.

Can we further improve the running time while having the same approxima-
tion ratio? The answer is positive. Algorithm VSRC2 is very simple, just scan
all the points from left to right once, and create h-rectangle with area at most
1 to cover the leftmost uncovered points. Formally,

Input: p; = (2,y;) for 1 <i<mand x1 < a9 < ... <y
Algorithm VSRC2

1. =1

2: while i <n do

3: Find the largest k, s.t. points p; until p;+r can be covered by one h-
rectangle with area no more than 1.

4: Create an h-rectangle to cover the points p;, -, pitk

5: i=i+k+1

6: end while

Theorem 3 Assume {p;} where x1 < xs < ... < x,, Algorithm VSRC2 is
2-approximation with running time O(n).

Proof. At each round, we create one h-rectangle to cover all those points whose
x-coordinates are within an interval, thus, there is no overlap between any two
h-rectangles.

Consider the optimal covering OPT, we modify OPT to another covering
OPT’ without overlapping h-rectangles. For any interval [I,7] covered by more
than one h-rectangles in OPT, we use the h-rectangle with the highest height
to cover this interval. For example, in the optimal covering, the interval [I, 7] is
covered by three h-rectangles: (hi,l1,71), (he,l2,72) and (hs,(,7), where h; <
he < hs, after the modification, the interval [I,r] is only covered by one h-
rectangle (hs, [, 7). Note that some h-rectangles with lower height in O PT may be
split to several h-rectangles in OPT", as shown in Figure 5. In such modification,
if two h-rectangles are nested in the optimal covering, the h-rectangle with lower
height will be split to more than one h-rectangles.

Consider the example shown in Figure 5, in the optimal covering as shown
in Figure 5(a), there are four h-rectangles 1, 2, 3 and 4, h-rectangle 1 is of the
lowest height and overlaps with the other three h-rectangles of higher heights.
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Fig. 5. Example of modify the optimal covering OPT to disjoint covering OPT’

After modification, h-rectangle 1 is split to three h-rectangles, say 1/, 1" and 1",
with less widths. Any split occurs from its overlap with an h-rectangle of higher
height. We can associate each part, except the leftmost one, of a split to the
right edge of the overlapping h-rectangle with higher height. In this example,
h-rectangles 1” and 1" are associated to the right edges of h-rectangles 3 and
4 respectively. It is easy to see that the right edge of each h-rectangle in OPT
can associate with at most one split part in OPT’. Thus, the number of disjoint
h-rectangles in OPT’ is at most twice to the number of h-rectangles in OPT.

In each round of Algorithm VSRC2, an h-rectangle is created to cover as
many points as possible. We can prove by induction from the leftmost point to
the rightmost point that the number of h-rectangles created by VSRC2 is no
greater than the number of h-rectangles of OPT’. Thus, we can say that VSRC2
is 2-approximation.

At each round, as the points are in order with respect to x;, finding the
largest k£ such that point p; until p;;, can be covered by one h-rectangle takes
O(k) time. As we can create an h-rectangle in each round in constant time, the
total running time of VSRC2 is bounded by O(n). O

Fig. 6. Tight example of algorithm VSRC2

Consider the example shown in Figure 6, there are 10 points (a to j) to be
covered in the plane. The heights of these points are in three levels: a, b, 7 and
j are of the same lowest height; ¢, d, g and h are of the same middle height;
while e and f are of the same highest height. The points of the same height
can be covered by an h-rectangle, but any two leftmost points of any two levels



cannot be covered by an h-rectangle. Similarly, any two rightmost points of any
two levels cannot be covered by an h-rectangle. For example, points a and c,
c and e, f and h, h and j cannot be covered by an h-rectangle. To deal with
this example, the optimal covering uses three h-rectangles (1, 2 and 3) while
Algorithm VSRC2 uses 5 h-rectangles (1, 2, 3, 2’ and 3’).

We can generalize this example, force each h-rectangle except the highest one
from the optimal covering covers 4 points of the same height, while the highest
h-rectangle covers 2 points. When applying VSRC2, all h-rectangles except the
one with highest height will be split to two h-rectangles with less width. In
this way, we can force the optimal covering uses k h-rectangles while Algorithm
VSRC2 uses 2k — 1 h-rectangles. Thus, the approximation ratio 2 is tight for
VSRC2.

2.3 Each Position Covered by at most 2 h-Rectangles

In the previous covering strategy, some positions in two-dimensional plane may
be in the overlapped area of more than 2 h-rectangles.

Note that Lemma 1 still holds for the optimal covering if each position can
be covered by at most 2 h-rectangles. If two h-rectangles r; = (hy, 2}, 27) and
ro = (hg,xh,x%) overlap, they must be nested, w.lo.g., 2} < 2z < x5 < 7.
We can say that ro only overlaps with r1, otherwise, some position in the plane
will be covered by more than two h-rectangles. Therefore, if there are more than
one h-rectangles nested in an h-rectangle r, all these h-rectangles except r are
disjoint.

Define N(i,7) to be the minimum number of h-rectangles for covering all
points between z; and x;. Similar to the description in Section 2.1, the optimal
covering consists of either two optimal coverings from z; to zj and from zy; to
xj, or an h-rectangle r covering z; and x; combined with the optimal covering for
those points higher than r. Based on the above analysis, we have the following
recurrence formula for the optimal covering of the VSRC problem.

o 1 if all points can be covered by one h-rectangle
NG )= min {miniSij {N (@i, k)+N(k+1,7)}, Nl(i,j)—i—l} otherwise

where N1(i,5) is the minimal number of disjoint h-rectangles for covering those
points whose z-coordinates are between x; and x;, and with their heights higher
than h = 1/(x; — x;). From the above analysis, as the h-rectangles must be
disjoint, we can use Algorithm VSRC2 to find N1 (i, j) as VSRC2 would give the
optimal covering if the h-rectangles are not allowed to overlap. Thus, N(i, 5)
can be computed in O(j —1) time, and the computation of N (7, j) can be finished
in O(n) time. As there are O(n?) entries of N(i,5) and N'(i, ), we have the
following theorem.

Theorem 4 Assume p; = (x;,y;) for 1 < i < m and 1 < 9 < ... < 1z,
and each position can be covered by no more than two h-rectangles, the VSRC
problem can be solved in O(n?) time.
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Concluding Remark

We have considered the variable-size rectangle covering problem and proposed
several algorithms for finding the optimal covering or approximation covering of
some variations of the problem. There are still many covering problems unsolved.
In our future research, we will focus on the following directions:

— If the number of points covered by an h-rectangle is bounded and the weight

of each point is fractional, it is NP-hard and we can directly use the algorithm
from [2] to achieve 3-approximation. But if each point is of unit weight, can
we achieve the optimal covering in polynomial time?

The online version of VSRC problem is a very interesting problem. For one-
dimensional case, there are several results on some similar problems [3, 4, 10,
14]. For two-dimensional case, there are many results on covering points by
rectangles if the bottom edges of rectangles do not have to be grounded at
the base.
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